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Manifolds

Introduction
Composition of mappings. Let  Define

Diffeomorphism.  is called a diffeomorphism if  are open,  is bijective and 

Local coordinate. Let  open in  injective. Then  is called a local coordinate on 
If  is also onto, then we call  a global coordinate. Let  be another local coordinate on  Then  and  are
compatible if  is a diffeomorphism.

Definition: Manifold. Let  are local coordinates on  satisfying 
(i)  (ii)  and  are compatible. 
We say  is a diffeomorphic structure on  and  is a -dimensional smooth manifold.

Topology on a manifold.  is open if  open in  Then  is a
topology on 

f : A → B, g : C → D.

g ∘ f : f (C) →−1 D,
g ∘ f(a) = g(f(a)).

f : U ⊂ R →n V ⊂ Rm U ,V f

f , f ∈−1 C .∞

M = ∅,U R ,φ :n U → M φ M.
φ φ ψ M. φ ψ

φ ∘−1 ψ

M = ∅,n ∈ N ,φ  :∗
λ U  ⊂λ R →n M M,λ ∈ Λ,

M =  Rgφ  ,⋃λ∈Λ λ ∀λ,μ ∈ Λ,φ  λ φ  μ

D = {φ  :λ λ ∈ Λ} M (M, D) n

Ω ⊂ M ∀φ ∈ D,φ (Ω)−1 R .n T = {Ω open in M}
M.



Assumption. (i)  is a Hausdorff topology on  
(ii)  such that 

Smooth maps on manifolds. Suppose  are manifolds,  is continuous. For 
  is a coordinate expression of  

 is smooth if every coordinate expresion of  is smoth. In this case, we write 

Diffeomorphism on manifolds.  is called a diffeomorphism if  is bijective and  are smooth.
We say  and  are diffeomorphic.

Homeomorphism  diffeomorphism: Milnor's 7-dimensional sphere.

Maximal diffeomorphic structure. Suppose  be a -dim manifold. Write

Then  is also a diffeomorphic structure on  and  are diffeomorphic.

Open submanifold. Let  be a manifold,  open in  Write

Then  is a manifold. We call  is an open submanifold of 

Local smoothness. Suppose  are manifolds,  
Let  open. We say  is smooth in  if  is smooth. 
Let  We say  is smooth at  if  a neighborhood  of  such that  smooth in 

Theorem: Partition of Unity. Let  be a connected manifold,  an open cover of  
Then  such that 
(i)  is local finite, i.e.  neighborhood  of  and  such that 

 
(ii)  
(iii)  on 

Corollary: Existence of cut-off function. Let  neighborhood of  Then  such
that (i)  (ii)  near 

Example: linear space. -dim linear space  
Global coordinate: 

Example: graph of a smooth function.  smooth,  open. Define

Global coordinate: 

Example: -sphere.  
Local coordinate:  with

where 

T M,
∃φ  ∈k D, k = 1, 2, ⋯ M =  Rgφ  .⋃k=1

∞
k

(M, D  ), (N , D  )M N f : M → N φ ∈
D  ,ψ ∈M D  ,N ψ ∘−1 f ∘ φ f .
f f f ∈ C (M; N ).∞

f : M → N f f , f−1

M N

→

(M, D) n

=D̄ {φ n-dim local coordinate on M : φ compatible with each ψ ∈ D}.

D̄ M (M, D), (M, )D̄

(M, D) Ω = ∅ M.

D  =Ω {φ   :
φ (Ω)−1 φ ∈ D}.

(Ω, D  )Ω Ω M.

M, N f : M → N .
Ω ⊂ M f Ω f   :

Ω
Ω → N

p ∈ M. f p ∃ U p f U .

M O M.
∃φ  ∈λ C  (M; [0, 1]),λ ∈0

∞ Λ
{φ  :λ λ ∈ Λ} ∀x ∈ M, ∃ V x λ  , ⋯ ,λ  ∈1 N Λ suppφ  ∩λ

V = ∅, ∀λ = λ  , i =i 1, ⋯ ,N .
∀λ ∈ Λ, ∃V ∈ O, suppφ  ⊂λ V .

 φ  ≡∑λ∈Λ λ 1 M.

p ∈ M,U p. ∃φ ∈ C  (M; [0, 1])0
∞

suppφ ⊂ U , φ ≡ 1 p.

n X = span{v  }  k k=1
n

φ : R →n X,φ(x) = x v  ,x =i
i (x , ⋯ ,x ).1 n

f : Ω ⊂ R →n Rm Ω

graphf = {(x, f(x)) : x ∈ Ω} ⊂ R .m+n

φ : Ω → graphf ,x ↦ (x, f(x)).

n S =n {x ∈ R :n+1 ∣x∣ = 1}.
φ  :k

± B  :=1 {x ∈ R :n ∣x∣ < 1} → S ,n

φ  (x) =k
± (x , ⋯ ,x , ±  ,x , ⋯ ,x ),1 k−1 1 − ∣x∣2 k+1 n

k = 1, ⋯ ,n + 1.



Example: projective space.  Local coordinate: 
 with

where 

Example: product manifold.  are manifolds. For,  define

and

Then  is a -dim manifold.

Tangent Space
Suppose  be a -dim smooth manifold.

Linear mapping and linear functional. For linear spaces  and  denote the space of all linear mappings from 
 to  by  and 

Space . For  define

For  regard  if  near  For  define

where  Then  is a linear space.

Smooth curve on manifold . 

Definition: tangent.  a smooth curve on  with  Define  by

 is called the tangent of  at 

P  =n {l ⊂ R :n+1 l is a one-dim linear subspace}. φ  :k

R →n P  n

φ  (x) =k R(x , ⋯ ,x , 1,x , ⋯ ,x ),1 k−1 k n

k = 1, ⋯ ,n + 1.

M , Nm n φ ∈ D  ,ψ ∈M D  ,N

φ × ψ : Domφ × Domψ → M × N , (x, y) ↦ (φ(x),ψ(y))

D  =M×N {φ × ψ : φ ∈ D  ,ψ ∈M D  }.M

(M × N , D  )M×N (m + n)

M n

X Y ,
X Y L (X;Y ), L (X) = L (X;R).

C  
p
∞ p ∈ M,

C  =p
∞ {f : ∃ neighborhood U  of p s.t. f ∈ C (U)}.∞

f , g ∈ C  ,p
∞ f = g f ≡ g p. α,β ∈ R, f , g ∈ C ,p

∞

(αf + βg)(x) = αf(x) + βg(x), (fg)(x) = f(x)g(x),

x ∈ Domf ∩ Domg. C  
p
∞

M γ ∈ C ((a, b); M), −∞ ≤∞ a < b ≤ ∞.

γ M γ(t  ) =0 p. γ (t  ) ∈′
0 L (C  )p

∞

⟨γ (t  ), f⟩ =′
0    f ∘

dt
d

t=t  0
γ, f ∈ C  .p

∞

γ (t  )′
0 γ t  .0



Definition: tangent space and tangent vector. The tangent space of  at  is

 is called a tangent vector. 
Remark. 

Theorem.  is a -d linear space, where  Given a local coordinate  with  Then a
basis of  is

Moreover, for a curve  on  with  write

Then 

Proof. Firstly we show that  Indeed, for 

Then

Hence  From this indentity, we immediately get  is a linear space spanned by 

 Finally we show that  are linearly independent. If for some  

 then

Thus  and  are linearly independent.

Propostion: properties of tangent vectors. Let  
(i)  near \implies  
(ii)  
(iii)  
(iv) 

Drivetive on a linear space. Let  be a -d linear space,  open in   Define  by

Then  is a linear isomorphism from  \to  In this sense, we regard  and 

M p

T  M =p {γ (t  ) :′
0 γ curve on M, γ(t  ) =0 p}.

v ∈ T  Mp
p = q ⟹ T  M ∩p T  M =q ∅.

T  Mp n n = dimM. φ φ(x  ) =0 p.
T  Mp

   =
∂xi
∂

p

   φ(x  +
dt
d

t=0
0 te  ).i

γ M γ(t  ) =0 p,

γ =i (φ ∘−1 γ) , i =i 1, ⋯ ,n.

γ (t  ) =′
0 (γ (t  ))    .i

0
′

∂xi
∂

p

γ (t  ) =′
0 (γ (t  ))    .i

0
′

∂xi
∂

p
f ∈ C  ,p

∞

⟨    , f⟩ =
∂xi
∂

p

 f ∘
dt
d

t=0
φ(x  +0 te  ) =i  (x  ).

∂xi
∂(f ∘ φ)

0

  

⟨(γ (t  ))    , f⟩i
0

′

∂xi
∂

p
= (γ (t  ))  (γ(t  ))i

0
′

∂xi
∂(f ∘ φ)

0

=    f ∘ φ(γ , ⋯ , γ )
dt
d

t=t  0

1 n

=    f ∘ γ = ⟨γ (t  ), f⟩.
dt
d

t=t  0

′
0

γ (t  ) =′
0 (γ (t  ))    .i

0
′

∂xi
∂

p
T  Mp

{    }  .∂xi
∂

p i=1
n {    }  

∂xi
∂

p i=1
n α  , ⋯ ,α  ∈1 n R, α     =i ∂xi

∂
p

0,

⟨α    , (φ ) ⟩ =i

∂xi
∂

p

−1 j α  (x  ) =i

∂xi
(φ ) ∘ φ−1 j

0 α  (x  ) =i

∂xi
∂xj

0 α  =j 0.

α  =1 ⋯ = α  =n 0, {    }  
∂xi

∂
p i=1

n

f , g ∈ C  , v,w ∈p
∞ T  M,α,β ∈p R.

f ≡ g p ⟨v, f⟩ = ⟨v, g⟩.
⟨v,αf + βg⟩ = α⟨v, f⟩ + β⟨v, g⟩.
⟨αv + βw, f⟩ = α⟨v, f⟩ + β⟨w, f⟩.
⟨v, fg⟩ = f(p)⟨v, g⟩ + g(p)⟨v, f⟩.

X n Ω X, p ∈ Ω. L : X → T  Ωp

L(v) =    (p +
dt
d

t=0
tv), v ∈ X.

L X T  Ω.p T  Ω =p X v =    (p +dt
d

t=0
tv).



Proof. Let  be a basis of   with  Then

Differentiation
Definition: differentiation on manifolds. For  and  define  by

where  is a curve on  such that 

Coordinate expression of differentiation. Let  with   with 
  and  Then

Proposition: properties of differentiation. Let  
(i)  near    
(ii)  
(iii) 

Proof. (i)(ii) are obvious. 
(iii) For curve  on  with  we have

Useful formulas.  
(i) Let  be the indentity map on  Then  
(ii) Let  Then  
(iii) Let  be a curve on  Then 

Proof. (i)  

(ii)  

(iii) 

E  , ⋯ ,E  1 n X, φ(x) = x E  i
i x = (x  , ⋯ ,x  ) ∈1 n R .n

L(v E  )i
i =    (p + tv E  )

dt
d

t=0

i
i

=    φ (p + tv E  )    
dt
d

t=0
( −1 i

i )
j

∂xj
∂

p

=    φ (p) + tv e     
dt
d

t=0
( −1 i

i)
j

∂xj
∂

p

=    φ (p) + tv    
dt
d

t=0
(( −1 )

j j)
∂xj
∂

p

= v    .j

∂xj
∂

p

f ∈ C (M; N )∞ p ∈ M, df  :p T  M →p T  Nf(p)

df  (v) =p    f ∘
dt

d

t=t  0
γ, v ∈ T  M,p

γ M γ(t  ) =0 p, γ (t  ) =′
0 v.

φ = φ(x) ∈ D  M p = φ(x  ),0 ψ = ψ(y) ∈ D  N

f(p) = ψ(y  ),0  =f
~

ψ ∘−1 f ∘ φ γ =i (φ ∘−1 γ) .i

   f ∘ γ =
dt
d

t=t  0

=

=

   (ψ ∘ f ∘ γ)    
dt
d

t=t  0

−1 j

∂yj
∂

f(p)

    (γ , ⋯ , γ )    
dt
d

t=t  0
f
~j 1 n

∂yj
∂

f(p)

(γ ) (t  )  (x  )    .i ′
0 ∂xi

∂  f
~j

0 ∂yj
∂

f(p)

f , g ∈ C (M; N ), v,w ∈∞ T  M,α,β ∈p R,h ∈ C (N ; P).∞

f ≡ g p ⟹ df  =p dg  .p
df  (αv +p βw) = αdf  (v) +p βdf  (w).p

d(h ∘ f)  =p dh ∘f(p) df  .p

γ M γ(t  ) =0 p, γ (t  ) =′
0 v,

d(h ∘ f)  (v) =p    h ∘
dt
d

t=t  0
(f ∘ γ) = dh  (f ∘ γ) (t  ) =f(p) ( ′

0 ) dh  (df  (v)).f(p) p

I  M M. d(I  )  =M p I  M, ∀p ∈T  p M .
f ∈ C (M).∞ df  (v) =p ⟨v, f⟩, ∀v ∈ T  M.p

γ M. dγ  (1) =t  0 γ (t  ).′
0

d(I  )  (γ (t  )) =M p
′

0    I  ∘dt
d

t=t  0 M γ =    γ =dt
d

t=t  0
γ (t  ).′

0

df  (γ (t  )) =p
′

0    f ∘dt
d

t=t  0
γ = ⟨v, f⟩.

dγ  (1) =t  0
   γ(t +dt

d
t=0

t  ) =0 γ (t  ).′
0



Tangent Bundle
Definition: tangent bundle. Given a -d manifold  Write

Set

Then  is a -d manifold, which called the tangent bundle of 

Definition: smooth vector field.  is called a smooth vetor field if

Let  be a local coordinate on an open set  in  Write

Then  is a smooth vector field on   is a basis vetor field.

Proof. The coordinate expression of  is

Thus 

Proposition: components of a vector field. Let  Define  by

Then  is a vector field if and only if 

Proof. Since

 is a vector field  each  smooth  each  smooth.

Proposition.  (with coordinate ).

Proof. Define a one-to-one mapping  by

Product of a smooth function and a vector field. Let  Define

n (M, D).

TM =  T  M.
p∈M

⋃ p

=D̂ {  :φ̂ φ ∈ D},  (x, v) =φ̂ v    ,x, v ∈i

∂xi
∂

φ(x)
R .n

(TM, )D̂ 2n M.

X ∈ C (M;TM)∞

X(p) ∈ T  M, ∀p ∈p M.

φ = φ(x) Ω M.

 :
∂xi
∂

Ω → T  Ω, p ↦    =    φ(φ (p) + te  ).p ∂xi
∂

p dt
d

t=0

−1
i

 
∂xi

∂ Ω. {  }  
∂xi

∂
i=1
n

X

∘φ̂−1  ∘
∂xi
∂

φ(x) = (x, e  ) ∈i C .∞

 ∈∂xi
∂ C (Ω;T  Ω).∞

p

X : M → T ,X(p) ∈ T  M.p X :i Ω → R

X(p) = X (p)    , p ∈i

∂xi
∂

p
Ω.

X X ∈i C (Ω), i =∞ 1, ⋯ ,n.

 ∘φ̂−1 X ∘ φ(x) = (x, (X ∘i φ)e  ) =i (x,X ∘1 φ, ⋯ ,X ∘n φ),

X ⟺ X ∘i φ ⟺ X i

TΩ = Ω × Rn φ = φ(x)

ψ : TΩ → Ω × Rn

ψ v    =( i

∂xi
∂

p
) (p, v , ⋯ , v ).1 n

V(M) = {X : X  smooth vector field on M}.

f , g ∈ C (M),X,Y ∈∞ V(M).

(fX + gY )(p) = f(p)X  +p g(p)Y  , p ∈p M .



Then smoothness of components of  implies  Hence  is a -module.

Action of a vector field on a smooth function. For  define  by

Then   
If  then  where 

Product of two vector fields. Let  Define  by

Then  is a linear differential operator of 2-order. The commutator of  is 

Proposition: Lie bracket. Let  Then there exists a unique vector field  such that

We call  the Lie bracket of  and 

Coordinate expression of Lie bracket. Let  then

Proof.

Proposition: properties of Lie bracket. Let  
(i)  
(ii)  
(iii)  (Jacobi's indentity).

Proof. (i)(ii) are obvious. 
(iii) Write  Then

X,Y fX + gY ∈ V(M). V(M) C∞

X ∈ V(M), f ∈ C (M),∞ Xf

(Xf)(p) = ⟨X  , f⟩, p ∈p M.

Xf ∈ C (M).∞

X = X  ,i
∂xi

∂ Xf = X  ,i
∂xi
∂f  =∂xi

∂f  ∘∂xi
∂(f∘φ) φ .−1

X,Y ∈ V(M). XY : C (M) →∞ C (M)∞

(XY )(f) = X(Y f), f ∈ C (M).∞

XY X,Y XY − Y X.

X,Y ∈ V(M). [X,Y ] ∈ V(M)

[X,Y ]f = (XY − Y X)f , ∀f ∈ C (M).∞

[X,Y ] X Y .

X = X  ,Y =i
∂xi

∂ Y  ,i
∂xi

∂

[X,Y ] = X  − Y   .( i

∂xi
∂Y j

i

∂xi
∂Xj

)
∂xj
∂

  

[X,Y ]f =

=

=

X  Y  − Y  X  i

∂xi
∂ ( j

∂xj
∂f ) i

∂xi
∂ ( j

∂xj
∂f )

X   + X Y  ( i

∂xi
∂Y j

∂xj
∂f i j

∂x ∂xi j

∂ f2

)

− Y   + Y X  ( i

∂xi
∂Xj

∂xj
∂f i j

∂x ∂xi j

∂ f2

)

X  − Y   .( i

∂xi
∂Y j

i

∂xi
∂Xj

)
∂xj
∂f

X,Y ,Z ∈ V(M),α,β ∈ R.
[X,Y ] = −[Y ,X].
[αX + βY ,Z] = α[X,Z] + β[Y ,Z].
[[X,Y ],Z] + [[Y ,Z],X] + [[Z,X],Y ] = 0

X  =3i X,X  =3i+1 Y ,X  =3i+2 Z, i ∈ Z.



Definition: diffeomorphism. Let  be a diffeomorphism. Define  by

Proposition. 

Proof. For 

Since

we get

Riemannian Manifolds

Bilinear Forms
Definition: bilinear form. Let  If

for any  then we call  a bilinear form.

=

=

=

=

=

 [[X  ,X  ],X  ]
k=0

∑
2

k k+1 k+2

 [X  X  − X  X  ,X  ]
k=0

∑
2

k k+1 k+1 k k+2

 X  X  X  − X  X  X  − X  X  X  + X  X  X  

k=0

∑
2

( k k+1 k+2 k+2 k k+1 k+1 k k+2 k+2 k+1 k)

 X  X  X  −  X  X  X  −  X  X  X  +  X  X  X  

k=0

∑
2

k k+1 k+2

k=0

∑
2

k k−2 k−1

k=0

∑
2

k+1 k k+2

k=0

∑
2

k+1 k k−1

 X  X  X  −  X  X  X  −  X  X  X  +  X  X  X  

k=0

∑
2

k k+1 k+2

k=0

∑
2

k k+1 k+2

k=0

∑
2

k+1 k k+2

k=0

∑
2

k+1 k k+2

0.

F : M → N dF : V(M) → V(N )

dF (X)(F (p)) = dF  (X(p)), X ∈p V(M), p ∈ M.

dF X  =( i

∂xi
∂

) (X ∘i F )dF  .−1 (
∂xi
∂

)

dF ([X,Y ]) = [dF (X), dF (Y )].

g ∈ C (M; N ),∞

⟨dF ([X,Y ]), g⟩ =

=

=

⟨[X,Y ], g ∘ F ⟩

X  − Y   , g ∘ F⟨( i

∂xi
∂Y j

i

∂xi
∂Xj

)
∂xj
∂ ⟩

X  − Y  ∘ F dF  , g .⟨(( i

∂xi
∂Y j

i

∂xi
∂Xj

) −1) (
∂xj
∂ ) ⟩

dF  (Y ∘(
∂xi
∂ ) j F ) =−1  ∘

∂xi
∂Y j

F ,−1

⟨dF ([X,Y ]), g⟩ = ⟨[dF (X), dF (Y )], g⟩.

B : V(M) × V(M) → C (M).∞

B(fX + gY ,Z) = fB(X,Z) + gB(Y ,Z),
B(X, fY + gZ) = fB(X,Y ) + g(X,Z)

f , g ∈ C (M),X,Y ,Z ∈∞ V(M), B



Proposition. Let  satisfying

For  if  then 

Proof. Choose a cut-off function  such that  and  where  is a
local coordinate near  For  near ,  which implies

Hence 

Corollary. Let  be a bilinear form on    If 
 then 

Pointwise definition of a bilinear form. Let  be a bilinear form on  Define

where  From the previous corollary, we know  is well-defined. Then
 is a biliear operator on 

Local definition of a bilinear form. Let  open in  Define  by

Then  is a bilinear form on 

Proof. First we verify that  It is sufficient to verify  smooth near  Choose a cut-off
function  such that  near  and  Then

Hence  is smooth near  Moreover, since  is a bilinear operator on  for each  it is easy to see
that  is bilinear on 

Components of a bilinear form. Let  be a coordinate neighborhood with coordinate  Write

 is a component of  since

Let  be a bilinear form on   is called symmetric if

F : V(M) → C (M)∞

F (fX + gY ) = fF (X) + gF (Y ), f , g ∈ C (M),X,Y ∈∞ V(M).

p ∈ M, X  =p Y  ,p F (X)(p) = F (Y )(p).

ζ ∈ C (M)∞ ζ(p) = 1 suppζ ⊂ Rgφ, φ = φ(x)
p. X = X  ,Y =i

∂xi
∂ Y  i

∂xi
∂ p X  =p Y  ⟹p X (p) =i Y (p), ∀i,i

F (X)(p) = F (ζ X)(p) = F ζ X  (p)2 ( 2 i

∂xi
∂ )

= (ζX )(p)F ζ  (p) = X (p)F ζ  (p)i (
∂xi
∂ ) i (

∂xi
∂ )

= Y (p)F ζ  (p) = F (Y )(p).i (
∂xi
∂ )

F (X)(p) = F (Y )(p).

B : V(M) × V(M) → C (M)∞ M, p ∈ M, X, ,Y , ∈X
~

Y
~

V(M).
X(p) = (p),Y (p) =X

~ (p),Y
~

B(X,Y )(p) = B( , )(p).X
~
Y
~

B M, p ∈ M,u, v ∈ T  M.p

B(u, v) := B(X,Y )(p),

X,Y ∈ V(M),X(p) = u,Y (p) = v. B(u, v)
B : T  M ×p T  M →p R T  M.p

Ω M,X,Y ∈ V(Ω). B : V(Ω) × V(Ω) → C (Ω)∞

B(X,Y )(p) = B(X  ,Y  ), p ∈p p Ω.

B Ω.

B(X,Y ) ∈ C (Ω).∞ B(X,Y ) p.
ζ ∈ C (M)∞ ζ ≡ 1 p suppζ ⊂ Ω.

B(X,Y ) ≡ B(ζX, ζY ) near p.

B(X,Y ) p. B T  Mp p,
B V(Ω).

Ω φ = φ(x).

B  :=ij B  ,  , i, j =(
∂xi
∂

∂xj
∂ ) 1, ⋯ ,n.

B  ij B,

X = X  ,Y =i

∂xi
∂

Y  ⟹j

∂xj
∂

B(X,Y ) = X Y B  .i j
ij

g M. g

g(u, v) = g(v,u), ∀p ∈ M,u, v ∈ T  M.p



 is called positive if

Definition of Riemannian manifolds
Definition: Riemannian manifold. Let  be a symmetric positive bilinear form on  Then  is called a
Riemannian metric on  and  is a called a Riemannian manifold.

Proposition. Every smooth manifold has a Riemannian metric.

Proof. Let  be a partition of unity with open cover  where  is a coordinate neighborhood with
coordinate  Define a bilinear form  on  by

Define a bilinear form g on  by

Then  is obviously symmetric and nonnegative. If  then  for each  Hence 
 for each    Hence  is Riemannian metric on 

Let  be a Riemannian manifold. Then  is a linear product on  for each  Write

and

Then  is a symmetric positive-definite matrix-valued smooth function.

Definition: smooth and pointwise smooth curve. Let   is a smooth curve on  if 

for some  
Let  be continuous.  is called a pointwise smooth curve on  is there exists a partition

such that  is smooth, 

Definition: length of a curve. Let  be pointwise smooth. Define the length of  by

Suppose  be connected.

Definition: metric on a Riemannian manifold. Let  Define

g

g(u,u) ≥ 0, ∀p ∈ M, ∀u ∈ T  (M),p

and g(u,u) = 0 ⟺ u = 0.

g M. g

M (M, g)

{ζ  }  k k=1
∞ {Ω  }  ,k k=1

∞ Ω  k

φ  .k g  k Ω  k

g  (X,Y ) =k (X −i Y ) , X,Y ∈i 2 V(Ω  ).k

M

g(X,Y ) =  g  (ζ  X, ζ  Y ), X,Y ∈
k=1

∑
∞

k k k V(M).

g g(X,Y ) = 0, g  (ζ  X, ζ  Y ) =k k k 0 k.
ζ  X =k ζ  Yk k ⟹ X = Y . g M.

(M, g) g T  (M)p p ∈ M.

∣u∣ := g(u,u) , u ∈ 
2
1

T  (M),p

g  =ij g  ,  , i, j =(
∂xi
∂

∂xj
∂ ) 1, ⋯n.

(g  )  ij n×n

γ : [a, b] → M. γ M γ =    γ~
[a,b]

 ∈γ~ C ((a −∞ ε, b + ε); M), ε > 0.
γ : [a, b] → M γ M

a = a  <0 a  <1 ⋯ < a  =N b

γ   
[a  ,a  ]i i+1

i = 1, ⋯ ,N .

γ : [a, b] → M γ

L(γ) = L(γ; [a, b]) =  ∣γ (t)∣dt.∫
a

b
′

M

p, q ∈ M.

d(p, q) = inf{L(γ) : γ pointwise smooth from p to q}.



Then  is a metric on 

Proof. We need to show that  for  Let  with  Let 
 be a coordinate such that  Choose  such that

Write  and  Then

where  is the smallest eigenvalue of  which has a posive infimum  on  Then

Hence 

Integration on a Riemannian Manifold
Integration on a coordinate neighborhood. Let  be a coordinate neighborhood  with coordinate 
Set

and

where  Define

The integral  is independent of the coordinate 

Proof. Suppose there is another coordinate  on  Write

Since

we have

d M.

d(p, q) > 0 p = q. γ : [a, b] → M γ(a) = p, γ(b) = q. φ :
B  →2 M φ (p) =−1 0, q ∈ Rgφ. c ∈ (a, b)

γ(c) ∈ φ(∂B  ), γ(t) ∈1 φ(B  ), ∀t ∈1 [a, c).

α = γ   
[a,c]

α =i (φ ∘−1 α) , i =i 1, ⋯ ,n.

∣α (t)∣ =′ 2

=

≥

 (α ) (t)     i ′

∂xi
∂

α(t)

(α ) (t)(α ) (t)g  (α(t))i ′ j ′
ij

λ  (α(t))∣((α ) , ⋯ , (α ) )(t)∣ ≥ c  ,1
1 ′ n ′

0
2

λ  :1 Rgφ → R (g  )  ,ij n×n c  
0
2 φ(  ).B1

L(γ) ≥ L(α) =  ∣α (t)∣dt ≥∫
a

c
′ (c − a)c  .0

d(p, q) ≥ (c − a)c  >0 0.

Ω Ω φ = φ(x).

C  (Ω) :=0 {f ∈ C(Ω) : suppf  compact in Ω}

V (Q) = det(g  (p))  ( ij n×n)
 

2
1

Q = {t    :i
∂xi

∂
p

0 ≤ t ≤i 1, i = 1, ⋯ ,n}.

I  (f) :=Ω  (f ∘∫
φ (Ω)−1

φ) det(g  )  ∘( ij n×n)
 

2
1

φ.

I  (f)Ω φ = φ(x).

ψ = ψ(y) Ω.

  =g~kl g  ,  , k, l =(
∂yk
∂

∂yl
∂ ) 1, ⋯ ,n.

 =   ,
∂xi
∂

∂xi
∂(ψ )−1 k

∂yk
∂

 g  =     , i, j = 1, ⋯ ,n.ij ∂xi
∂(ψ )−1 k

∂xj
∂(ψ )−1 l

g~kl



Hence

where  Thus

Then by computation, we get

Integral of continuous functions with compact support. Suppose  Then there exist 

 and coordinate neighborhood  such that  and  on 

Define

It is easy to see that  is independent of the choose of  and 

Integral of general functions on  Since  is a non-negative linear functional, by Riesz
Representation Theorem, there exists a unique regular Borel measure  (called the volume measure) such that

Connections

Affine Connections
Definition: Affine connections. Let  be a smooth manifold.  such that for 

 we have 
(i)  
(ii)  
(iii)  
Then we call  an affine connection on 

Proposition. Every manifold has affine connections.

Proof. Choose a partition of unity  each  contained in a coordinate neighborhood  Let 
 be a coordinate on  Define  by

(g  ) =ij ∇(ψ ) (   )∇(ψ ),−1 T g~kl −1

∇(ψ ) =−1 (  ) =∂xj
∂(ψ )−1 i

∇(ψ ∘−1 φ) ∘ φ .−1

(det(g  )) =ij
 2

1
∣det∇(ψ )∣(det(g  )) .−1

kl
 2

1

  =

=

 (f ∘ ψ)(det(   )) ∘ ψ∫
ψ (Ω)−1

g~kl
 

2
1

 (f ∘ φ)(det(   )) ∘ φ∣det∇(ψ ∘ φ)∣∫
φ (Ω)−1

g~kl
 2

1 −1

 (f ∘ φ) det(g  )  ∘ φ.∫
φ (Ω)−1

( ij n×n)
 

2
1

f ∈ C  (M).0 ξ  , ⋯ , ξ  ∈1 N

C  (M; [0, 1])0
∞ Ω  , ⋯ , Ω  1 N suppξ  ⊂i Ω  , ∀ii ξ  =

i=1
∑
N

i 1 suppf .

I(f) =  I  (ξ  f).
i=1

∑
N

Ω  i i

I(f) ξ  i Ω  .i

M. I : C  (M) →0 R
V

I(f) =  fdV , ∀f ∈∫
M

C  (M).0

M D : V(M) × V(M) → V(M)
∀f , g ∈ C (M),X,Y ,Z ∈∞ V(M),
D  (Y +X Z) = D  Y +X D  Z,X

D  (fY ) =X (Xf)Y + fD  Y ,X

D  Z =fX+gY fD  Z +X gD  Z.Y

D M.

{ζ  }  ,k k=1
∞ suppζ  k Ω  .k φ  =k

φ  (x)k Ω  .k D :k V(Ω  ) ×k V(Ω  ) →k V(Ω  )k



Then  is an affine connection on  Define  by

Then  is an affine connection on 

Proposition. Let  
(i)  
(ii)  near 

According to the proposition, we can define  on  where  is an open subset of  by

Then  And we have

for 

We can also define  by

Then  is an affine connection on 

For a local coordinate  write

We call  the connection coefficients. For  we have

Thus the affine connection  is locally decided by its connection coefficients 

Proposition. Let  be an affine connection on smooth manifold   be a smooth surve such that 
 Then for   only depends on 

Proof.

Definition: vector field along a curve. Let  and  be smooth such that

D  Y (p) =X
k ⟨X(p),Y ⟩  (p), p ∈i

∂xi
∂

Ω  ,X,Y ∈k V(Ω  ).k

D  k Ω  .k D : V(M) × V(M) → V(M)

D  Y =X  D  (ζ  Y ), X,Y ∈
k=1

∑
∞

X
k

k V(M).

D M.

X, ,Y , ∈X
~

Y
~

V(M), p ∈ M.
X(p) = (p) ⟹X

~
D  Y (p) =X D  Y (p).X

~

Y ≡ Y
~

p ⟹ D  Y (p) =X D  Y (p).X
~

D V(Ω) Ω M

D  X :=v D  (p), V ∈V X
~ ∈X

~
V(M),V (p) = v, v ∈ T  Ω.p

D : T  Ω ×p V(Ω) → T  Ω.p

D  (αX +v βY ) = αD  X +v βD  Y ,v

D  (fX) =v ⟨v, f⟩X(p) + f(p)D  X,v

D  X =αv+βw αD  X +v βD  X,w

∀α,β ∈ R, v,w ∈ T  Ω,X,Y ∈p V(Ω), f ∈ C (Ω).∞

D : V(Ω) × V(Ω) → V(Ω)

D  Y (p) :=X D  Y , p ∈X(p) Ω.

D Ω.

φ = φ(x),

D   = 
∂xi

∂
∂xj
∂

Γ   , i, j =ij
k

∂xk
∂

1, ⋯ ,n.

Γ  
ij
k X = X ,Y =i

∂xi
∂ Y  ,j

∂xj
∂

D  Y =X X D  Y  =i
 

∂xi
∂ ( j

∂xj
∂ ) X  + X Y Γ   .( i

∂xi
∂Y k

i j
ij
k )

∂xk
∂

D Γ  .ij
k

D M, γ : (a, b) → M

γ(t  ) =0 p ∈ M, γ (t  ) =′
0 v ∈ T  (M).p X ∈ V(M), D  Xv X ∘ γ.

  

D  Xv = D  (X  ) = v(X )  (p) + X (p)D   v
i

∂xi
∂ i

∂xi
∂ i

v ∂xi
∂

=    (X ∘ γ)  (p) + X ∘ γ(t  )D   .
dt
d

t  0

i

∂xi
∂ i

0 v ∂xi
∂

γ : (a, b) → M X : (a, b) → TM

X(t) ∈ T  M, t ∈γ(t) (a, b).



Then we call  a smooth vector field along the curve  Let  be the set of all smooth vector fields along 

Examples. (i)  
(ii)  
(iii)  define  Then  with 

Proposition. Let  be an affine connection on a smooth manifold  and  be smooth. Then there
exists a unique operator  satisfying 
(i)  
(ii)  
(iii) If  and there exists a smooth vector field  in a neighborhood of  such that 
near  then 

Remark. We often write  instead of 

Proof. We will prove the proposition by computation.

where 

Examples. (i)  

(ii) 

Riemannian Connection
For Riemannian manifold  we write 

Definition: metric connection. Let  be an affine connection on a Riemannian manifold   is called a
metric connection if

Proposition. Let  be a metric connection. 
(i)  for  smooth vector fields near  
(ii)  for  smooth and 

Proof. (i) Choose smooth vector field  near  such that  Then

X γ. V(γ) γ.

γ ∈′ V(γ).
X ∈ V(M) ⟹ X ∘ γ ∈ V(γ).
f ∈ C (a, b), p ∈∞ M, v ∈ T  M,p X(t) = f(t)v, t ∈ (a, b). X ∈ V(γ) γ(t) = p, t ∈

(a, b).

D M γ : (a, b) → M
 :

dt
D V(γ) → V(γ)

 (X +
dt
D Y ) =  +

dt
DX  , ∀X,Y ∈

dt
DY V(γ).

 (fX) =
dt
D f X +′ f  , ∀f , ∈

dt
DX C ((a, b)),X ∈∞ V(γ).

X ∈ V(γ) X
~

p = γ(t  )0 ∘X
~

γ = X

t  ,0  (t  ) =
dt
DX

0 D  .γ (t  )′ 0 X
~

 
dt
dX  .

dt
DX

  

 
dt

dX
=  X  
dt

d
( i

∂xj
∂

)

=   + X   
dt

dXj

∂xj
∂ j

dt

d

∂xj
∂

=   + X D   
dt

dXk

∂xk
∂ j

γ′
∂xj
∂

=   + X (γ ) Γ   
dt

dXk

∂xk
∂ j i ′

ij
k

∂xk
∂

=  + Γ   X  ,(
dt

dXk

ij
k

dt

dγi j)
∂xk

∂

X = X  , γ =i
∂xj

∂ ′ (γ )  .i ′
∂xi

∂

 =
dt2
d γ2

 + Γ     .(
dt2
d γ2 k

ij
k

dt
dγi

dt
dγj ) ∂xk

∂

v ∈ T  M, γ(t) =p p,X(t) = f(t)v ⟹  =
dt
dX f v.′

(M, g), ⟨⋅, ⋅⟩ = g(⋅, ⋅).

D (M, g). D

X⟨Y ,Z⟩ = ⟨D  Y ,Z⟩ +X ⟨Y ,D  Z⟩, ∀X,Y ,Z ∈X V(M).

D

v(⟨X,Y ⟩) = ⟨D  X,Y (p)⟩ +v ⟨X(p),D  (Y )⟩v v ∈ T  M,X,Yp p.
 ⟨X,Y ⟩ =

dt
d ⟨  ,Y ⟩ +

dt
dX ⟨X,  ⟩,

dt
dY γ : (a, b) → M X,Y ∈ V(γ).

V p V (p) = v.



(ii)

Definition: symmetric connection. An affine connection  on a smooth manifold  is called symmetric if

which is locally equivalent to 

Definition: Riemannian connection. A symmetric metric connection  on a Riemannian manifold  is called
Riemannian connection.

Example. The Riemannian connection on  is

where  be the orthogonal
projection from  to 

Proof. For  we have  Then

For  we have

since  Then we claim that

  

v(⟨X,Y ⟩) = V ⟨X,Y ⟩(p)

= ⟨D  X,Y ⟩(p) + ⟨X,D  Y ⟩(p)V V

= ⟨D  X,Y (p)⟩ + ⟨X(p),D  (Y )⟩.v v

=

=

=

=

⟹

=

=

=

 ⟨  ,  ⟩
dt

d

∂xi
∂

∂xj
∂

 ⟨  ,  ⟩ ∘ γ
dt

d (
∂xi
∂

∂xj
∂ )

γ (t) ⟨  ,  ⟩′ (
∂xi
∂

∂xj
∂ )

⟨D   ,  ⟩ + ⟨  ,D   ⟩γ′
∂xi
∂

∂xj
∂

∂xi
∂

γ′
∂xj
∂

⟨   ,  ⟩ + ⟨  ,   ⟩
dt

d

∂xi
∂

∂xj
∂

∂xi
∂

dt

d

∂xj
∂

 ⟨X,Y ⟩
dt

d

 Y ⟨  ,  ⟩ + X  ⟨  ,  ⟩ + X Y  ⟨  ,  ⟩
dt

dX i
j

∂xi
∂

∂xj
∂ i

dt

dY j

∂xi
∂

∂xj
∂ i j

dt

d

∂xi
∂

∂xj
∂

⟨   ,Y ⟩ + ⟨X,  ⟩ + ⟨X   ,Y ⟩ + ⟨X,Y   ⟩
dt

dX i

∂xi
∂

dt

dY j

∂xj
∂ i

dt

d

∂xi
∂ j

dt

d

∂xj
∂

⟨  X,Y ⟩ + ⟨X,  Y ⟩.
dt

d

dt

d

D M

D  Y −X D  X =Y [X,Y ], ∀X,Y ∈ M,

Γ  =ij
k Γ  , ∀i, j, k =ji

k 1, ⋯ ,n.

D M

Sn

∇  Y (p) =X T  (D  (p)), X,Y ∈p X
~ Y

~
V(S ),n

, ∈X
~
Y
~

V(R ),   =n+1 X
~

Sn
X,   =Y

~
Sn

Y ,T  (x) =p x − ⟨x, p⟩p,x ∈ R , p ∈n+1 Sn

Rn+1 T  S .p
n

x ∈ R , y ∈n+1 T  S ,p
n ⟨T  x,T  y⟩ =p p ⟨T  x, y⟩ =p ⟨x, y⟩.

  
X⟨Y ,Z⟩ = ⟨ , ⟩ = ⟨D  , ⟩ + ⟨ ,D  ⟩X

~
Y
~
Z
~

X
~ Y

~
Z
~

Y
~

X
~Z

~

= ⟨T (D  ),Z⟩ + ⟨Y ,T (D  )⟩ = ⟨∇  Y ,Z⟩ + ⟨Y , ∇  Z⟩.X
~ Y

~
X
~Z

~
X X

=X
~

 , =X
~ i

∂xi
∂ Y

~
 ,Y

~ i
∂xi

∂

⟨ (p), p⟩ =X
~ ⟨ (p), p⟩ =Y

~ 0, ∀p ∈ S ,n

  =X
~

Sn
X ∈ V(S ),   =n Y

~
Sn

Y ∈ V(S ).n

T ([ , ]) =X
~
Y
~ [X,Y ].



For simplicity, we only prove the formula at  when  We have 
 Then  Thus

Finally, we get

Theorem. The Riemanian connection exists uniquely, the connection coefficients of which are given by

where

Proof. The affine connection  given by  is obviously symmetric since  Moreover,

Hence

Since  we have

Thus the connection is exactly a Riemannian connection. Next, we will prove the uniqueness. We claim that if a
Riemannian connection  has coefficients  then  Indeed,

p = e  ,n+1 T  S =p
n span{  }  .∂xi

∂
i=1
n T  (x) =p x −

x e  =n+1
n+1 (x , ⋯ ,x , 0).1 n (p) =X

~ n+1 (p) =Y
~ n+1 0.

  

T  ([ , ](p))p X
~
Y
~

= T    −   p (
i,j=1

∑
n+1

(X~ i

∂xi
∂Y

~ j

Y
~ i

∂xi
∂X

~ j

)
∂xj
∂ )

=  X  − Y   

i,j=1

∑
n

( i

∂xi
∂Y j

i

∂xi
∂Xj

)
∂xj
∂

= [X,Y ](p).

∇  Y − ∇  XX Y = T (D  − D  ) = T ([ , ]) = [X,Y ].X
~ Y

~
Y
~ X

~
X
~
Y
~

Γ  =ij
k Γ  g , i, j, k ∈ij,m

mk {1, ⋯ ,n},

Γ  =ij,m   +  −  , i, j,m ∈
2
1 (

∂xj
∂g  im

∂xi
∂g  jm

∂xm
∂g  ij ) {1, ⋯ ,n},

(g )  =ij
n×n (g  )  , g  =ij n×n

−1
ij ⟨  ,  ⟩, i, j ∈

∂xi
∂

∂xj
∂

{1, ⋯ ,n}.

D Γ  =ij
k Γ  gij,m

mk Γ  =ij
k Γ  .ji

k

  

=

=

=

X⟨Y ,Z⟩

X ∂  ⟨Y ∂  ,Z ∂  ⟩i
i

j
j

k
k

X (∂  Y Z + Y ∂  Z )g  + X Y Z ∂  g  ,i
i

j k j
i

k
jk

i j k
i jk

⟨D  Y ,Z⟩ + ⟨Y ,D  Z⟩X X

(X ∂  Y + X Y Γ  )Z g  + (X ∂  Z + X Z Γ  )Y g  .i
i

l i j
ij
l k

lk
i
i

l i j
ij
l k

lk

⟨D  Y ,Z⟩ + ⟨Y ,D  Z⟩ − X⟨Y ,Z⟩X X = X (Y Z + Y Z )Γ  g  − X Y Z ∂  g  .i j k k j
ij
l

lk
i j k

i jk

Γ  g  =ij
l

lk Γ  g g  =ij,m
ml

lk Γ  δ  =ij,m mk Γ  ,ij,k

=

=

⟨D  Y ,Z⟩ + ⟨Y ,D  Z⟩ − X⟨Y ,Z⟩X X

 X Y Z (Γ  + Γ  ) − X Y Z ∂  g  
2
1 i j k

ij,k ik,j
i j k

i jk

 X Y Z (∂  g  + ∂  g  − ∂  g  + ∂  g  + ∂  g  − ∂  g  − 2∂  g  ) = 0.
2
1 i j k

j ik i jk k ij k ij i kj j ik i jk

D Γ  ,ij
k Γ  =ij

k Γ  g .ij,m
mk

∂  g  =j im ∂  ⟨∂  , ∂  ⟩ =j i m ⟨D ∂  , ∂  ⟩ +∂  j i m ⟨∂  ,D  ∂  ⟩,i ∂  j m

∂  g  =i jm ⟨D  ∂  , ∂  ⟩ +∂  i j m ⟨∂  ,D  ∂  ⟩,j ∂  i m

∂  g  =m ij ⟨D  ∂  , ∂  ⟩ +∂  m i j ⟨∂  ,D  ∂  ⟩.i ∂  m j



Thus

Example. Let  Then

Hence

Thus

Geodesics

Some Preliminaries
Definition: vector fields along a surface. Let  be a manifold,  is called
a smooth surface on   is called a smooth vector field along  is 

 

For a function  we write 

Set

are vector fields along 

Proposition. 

Proof. Write  Then

Hence

Remark. From the proof above, we see that in general 

Definition: local diffeomorphism.  be two manifolds,   is a local diffeomorphism if 
 there exist a neighborhood  of  and  of  such that  is a diffeomorphism\dots

Γ  =ij,m ⟨D  ∂  , ∂  ⟩ =∂  i j m Γ  g  ⟹ij
l

lm Γ  g =ij,m
mk Γ  .ij

k

H =2 {(x, y) : x ∈ R, y > 0}, g  (x, y) =ij y δ  .−2
ij

∂  g  =x ij 0, ∂  g  =y ij −2y δ  .−3
ij

Γ  =ij
k −y (δ  +−1

im δ  +2j δ  δ  −jm 2i δ  δ  )δ  =ij 2m m y (δ  δ  −−1
ij 2k δ  δ  −jk 2i δ  δ  ).ik 2j

(Γ  ) =ij
1 y   , (Γ  ) =−1 ( 0

−1
−1
0 ) ij

2 y   .−1 (1
0

0
−1)

M f = f(s, t) ∈ C ((a, b) ×∞ (c, d); M)
M. X = X(s, t) ∈ C ((a, b) ×∞ (c, d);TM) f

X(s, t) ∈ T  M,f(s,t) ∀s ∈ (a, b), t ∈ (c, d).

F = F (s, t) : A × B → C, F  (t) =s F (s, t),F  (s) =t F (s, t).

 =
∂t
∂f

 ,  =
dt

df  s

∂s
∂f

 ,  =
ds

df  t

∂t
∂X

 ,  =
dt

dX  s

∂s
∂X

 
ds

dX  t

f .

 =∂s∂t
∂ f2

 .∂t∂s
∂ f2

f =i (φ ∘−1 f) ,X =i X ∂  .i
i

 =
∂s
∂f

 ∂  ,  =
∂s
∂f i

i ∂t
∂f

 ∂  ,
∂t

∂f i
i

 =
∂s
∂X

 + Γ   X ∂  .(
∂s

∂Xk

ij
k

∂s
∂f i j) k

  =
∂s
∂

∂t
∂f

 + Γ    ∂  =(
∂s∂t
∂ f2 k

ij
k

∂s
∂f i

∂t
∂f j ) k   .

∂t
∂

∂s
∂f

 
∂s∂t
∂ X2

=  .∂t∂s
∂ X2

LetM, N F ∈ C (M; N ).∞ F

∀p ∈ M, U p V f(p) F : U → V



Remark.  is a local diffeomorphism if and only if   is bijective.

Definition: Riemannian isometry. Let  be two Riemannian manifolds,  be a
diffeomorphism.  is called a Riemannian isometry if

Definition: local Riemmanian isometry. Let   is called a local Riemannian isometry if 
 there exist a neighborhood  of  and  of  such that  is a Riemannian isometry.

Remark.  is a local Riemannian isometry if  satisfies 

Example.  is a local Riemannian isometry.

Proposition. Let  is a local Riemannian isometry. Then 
(i)  for any curve  on  
(ii) 

Geodesic and Expotential Map
Definition: geodesic. Let  be a smooth curve. The geodesic equation is

which is locally equivalent to

We say a non-constant curve  is a geodesic if  satisfies the geodesic equation. If  can be
extended to be a geodesic, we call  a geodesic segment.

Proposition. Let  be a geodesic. 
(i)  with  is also a geodesic. 
(ii) 

Proof. (i) Obviously. (ii) 

For  let  be the unique solution of

Let  with  be the maximum domain of  Then

where

is an open subset of 

Example. On the sphere  let  Then

F ∈ C (M; N )∞ ∀p ∈ M, dF  p

M, N F ∈ C (M; N )∞

F

⟨dF  (u), dF  (v)⟩  =p p N ⟨u, v⟩  , ∀u, v ∈M T  M, p ∈p M. (∗)

F ∈ C (M; N ).∞ F ∀p ∈
M, U p V F (p) F : U → V

F ∈ C (M; N )∞ F (∗).

F : R → S ,F (t) =1 eit

F : M → N

L(F (γ)) = L(γ) γ M.
d  (F (p),F (q)) ≤N d  (p, q), ∀p, q ∈M M.

γ : (a, b) → M

 =
dt

d γ2

0,

+
dt2
d γ2 k

Γ    =ij
k

dt

dγi

dt

dγj
0, ∀k = 1, ⋯ ,n.

γ γ γ ∈ C ([a, b]; M)∞

γ

γ

α(t) = γ(at + b) a, b ∈ R, a = 0
∣γ ∣ ≡′ constant.

 ∣γ ∣ =
dt
d ′ 2  ⟨γ , γ ⟩ =

dt
d ′ ′ 2⟨γ , γ ⟩ =′′ ′ 0.

v ∈ TM, Γ(v, ⋅) = Γ(v, t)

 {γ = 0,′′

γ (0) = v.′

(a  , b  )v v −∞ ≤ a  <v b  ≤v ∞ Γ(v, ⋅).

Γ ∈ C (Ω; M), Γ(kv, t) =∞ Γ(v, kt), ∀v ∈ TM, k, t ∈ R,

Ω = {(v, t) : v ∈ TM, t ∈ (a  , b  )}v v

TM × R.

S ,n p ∈ S , v ∈n T  S .p
n

v



Definition: expotential map. Let  be open in  Define

Then  is called expotential map. Moreover, 

Let  be a star-shaped neighborhood of  in  Write

Then  For 

since 

Definition: geodesic neighborhood. By the inverse mapping theorem, there exists a neighborhood  of  such
that

is a diffeomorphism. We call  a geodesic neighborhood of  If in addition  write

be the geodesic ball. For  we also write

and radial geodesic  with  
There also exists a neighborhood of  and  such that 

is a diffeomorphism satisfying   is called total geodesic neighborhood.

Minimizing Properties
Gauss's Lemma. Let  Then

Proof. Select a smmoth curve  such that  and write 
 Then

Moreover,

Γ(v, t) = (cos ∣v∣t)p + (sin ∣v∣t)  .
∣v∣
v

D = {v ∈ TM : 1 ∈ (a  , b  )}v v TM.

exp : D → M, exp(v) = Γ(v, 1).

exp ∈ C (D; M)∞ Γ(v, t) = exp(tv).

D  =p D ∩ T  Mp 0  p T  M.p

exp  (v) :=p exp(v), v ∈ T  M.p

d(exp  )  :p v T  D  (=v p T  M) →p T  M.exp  (v)p
v = 0  ,p

d(exp  )  =p 0  p I  ,T  Mp

d(exp  )  (v) =p 0  p
   exp  (tv) =

dt
d

0 p v.

U 0  p

exp  :p U → exp  (U)p

exp  (U)p p. U = B  (0  ) ⊂R p T  M,p

B  (p) :=R exp  (B  (0  ))p R p

r ∈ (0,R),

S  (p) :=r exp  (∂B  (0  )),p r p

exp  (tv), 0 ≤p t ≤ 1 ∣v∣ = r.
p δ > 0 ∀q ∈ U ,

exp  :q B  (0  ) →r q exp  (B  (0  ))q r q

U ⊂ B  (0  ).r q U

p ∈ M, v ∈ Dom(exp  ).p

⟨d(exp  )  (v), d(exp  )  (w)⟩ =p v p v ⟨v,w⟩, ∀w ∈ T  M.p

α : (−ε, ε) → Dom(exp  )p α(0) = v,α (0) =′ w f(s, t) =
exp  (tα(s)).p

∂  f =s d(exp  )  (tα (s)), ∂  f(s) =p tα(s)
′

t d(exp  )  (α(s)).p tα(s)

2



Hence

Taking  we get

Theorem. Let  geodesic ball,   a piecewise
smooth curve such that  Then 
(i)  
(ii) If  and  then  Hence 

Proof. (i) Assume  and  Let  Then 
 Set

Then

(ii) Suppose  Since  we have  Hence  Thus 

 Hence  Write

Then  Observe that

Hence  By the Cauchy-Schwartz inequality, we get  which implies 

Cororllary1. Let  be a geodesic ball,  Then 

Cororllary2. 

  

∂  ⟨∂  f , ∂ f⟩ =t s t

=

=

=

⟨∂  f , ∂  f⟩ + ⟨∂  f , ∂  f⟩ts t s t
2

⟨∂  f , ∂  f⟩ =  ∂  ⟨∂  f , ∂  f⟩st t 2
1

s t t

 ∂  ⟨∂  f , ∂  f⟩   =  ∂  ⟨α(s),α(s)⟩
2
1

s t t t=0 2
1

s

⟨α (s),α(s)⟩.′

⟨∂  f , ∂  f⟩(s, t) =s t ⟨α (s),α(s)⟩t.′

s = 0, t = 1,

⟨w, v⟩ = ⟨∂  f(0, 1), ∂  f(0, 1)⟩ =s t ⟨d(exp  )  (w), d(exp  )  (v)⟩.p v p v

p ∈ M,B  (p)R v ∈ B  (0  ) ∖R p {0  }, q =p exp  (v),p α : [0, 1] → M

α(0) = p,α(1) = q.
L(α) ≥ ∣v∣.
L(α) = ∣v∣ ∣α ∣ =′ constant, α(t) = exp  (tv), t ∈p [0, 1]. ∣v∣ = d(p, q).

Ranα ⊂ B  (p)R α(t) = p, ∀t ∈ (0, 1]. β = exp  ∘α.p
−1 β(0) = 0  ,β(1) =p

v,β(t) = 0, t ∈ (0, 1].

β  =⊥
′  β, β  =

⟨β,β⟩
⟨β ,β⟩′

∥
′ β −′ β  ,⊥

′

α  =⊥
′ d(exp  )  (β  ), α  =p β ⊥

′
∥
′ d(exp  )  (β  ).p β ∥

′

⟹

⟹

α = α  + α  , ⟨α  ,α  ⟩ = 0′
⊥
′

∥
′

⊥
′

∥
′

∣α ∣ = ∣α  ∣ + ∣α  ∣ ≥ ∣α  ∣ = ∣β  ∣ = ∣β∣ ∣⟨β ,β⟩∣ =  ∂  ∣β∣  ′ ( ⊥
′ 2

∥
′ 2)

 
2
1

⊥
′

⊥
′ −1 ′

t

L(α) =  ∣α ∣dt ≥   ∂  ∣β∣  dt ≥  ∂  ∣β∣dt = ∣v∣.∫
0

1
′ ∫

0

1

t ∫
0

1

t

L(α) = ∣v∣, ∣α ∣ =′ constant. ∣α ∣ =′ ∣α  ∣,⊥
′ α  =∥

′ 0. β  =∥
′ 0. ∣β ∣ =′

∣β  ∣ =⊥
′ ∣α ∣ =′ ∣v∣. ∣  β dt∣ =∫0

1 ′  ∣β ∣dt =∫0
1 ′ ∣v∣.

e =   ∣β ∣dt   β dt =∫
0

1
′

−1

∫
0

1
′ ∣v∣  β dt.−1 ∫

0

1
′

∣e∣ = 1.

 (∣β ∣ −∫
0

1
′ ⟨β , e⟩)dt =′ 0, ∣β ∣ −′ ⟨β , e⟩ ≥′ 0.

∣β ∣ =′ ⟨β , e⟩.′ β ∥′ e, β =′ v,β = vt,α =
exp  β =p exp  (vt).p

B  (p)R 0 < r < R, q ∈ S  (p).r d(p, q) = r.

B  (p) =R {x ∈ M : d(x, p) < R}.



Proof. For  we have  for some  Thus  
For  given  and  there exists  

 Then  Let  we get  Hence 

Cororllary3. Let  be a non-constant piecewise smooth curve such that 
 Then  is a geodesic segment.

Proof. Choose a geodesic ball  and  Then there exists   Since 
 satisfies the minimizing property, we get  is a geodesic segment, which means  can be extended

to a geodesic  Similarly we can extend  at  to  Given  we also get  is a

geodesic in  for some  Then

Hence  is a geodesic segment.

Hopf-Rinow Theorem
Theorem. Let  Assume  Then for each  there exists 

 such that 

Proof. Choose  such that  Then there exists  satisfying

Then  for some  Set  
We claim that  Indeed, for  we have 
for some  Then

Hence  The " " inequality is obvious. 
Set

We have  Let  and assume that  By definition,  Write 
Repeating the procedure above, we get some  such that

and     
Write

Then

q ∈ B  (p),R q ∈ S  (p)r r ∈ [0,R). d(p, q) = r < R.
q ∈ M ∖ B  (p),R γ : [0, 1] → M, γ(0) = p, γ(1) = q r ∈ (0,R), c ∈ [0, 1],

γ(c) ∈ S  (p).r L(γ) ≥ L(γ; [0, c]) ≥ d(p, γ(c)) = r. r → R, L(γ) ≥ R. d(p, q) ≥
R.

γ : [a, b] → M ∣γ ∣ =′ constant,L(γ) =
d(γ(a), γ(b)). γ

B  (γ(a))R r ∈ (0,R). c ∈ (a, b), γ(c) ∈ S  (γ(a)).r

γ   
[a,c]

γ   
[a,c]

γ∣  [a,c]

γ   .
(a−ε,a+ε)

γ γ(b) (b − ε, b + ε). t ∈ (a, b), γ

(t, t + ε(t)) ε(t) > 0.

[a, b] ⊂ (a − ε, a + ε) ∪ (b − ε, b + ε) ∪  (t, t +
t∈(a,b)

⋃ ε(t)).

γ

p ∈ M. Dom(exp  ) =p T  M.p q ∈ M, d(p, q) = r > 0, v ∈
T  M, ∣v∣ =p 1 q = exp  (rv).p

B  (p)2ε q ∈ B  (p).2ε m ∈ S  (p)ε

d(m, q) =  d(x, q).
x∈S  (p)ε

inf

m = exp  (εv)p v ∈ T  M, ∣v∣ =p 1. γ(t) = exp  (tv), t ∈p R.
ε + d(m, q) = d(p, q). α : [0, 1] → M,α(0) = p,α(1) = q, α(s) ∈ S  (p)ε

s ∈ (0, 1).

L(α) = L(α; [0, s]) + L(α; [s, 1]) ≥ ε + d(m, q).

d(p, q) ≥ ε + d(m, q). ≤

T = {t ∈ [0, r] : t + d(γ(t), q) = d(p, q)}.

ε ∈ T = ∅. t  =0 supT t  <0 r. t  ∈0 T . p =′ γ(t  ).0

ε >′ 0,m ∈′ S  (p)ε′

d(m , q) =′  d(x, q),
x∈S  (p )ε′ ′

inf

v ∈′ T  M, ∣v ∣ =p′ ′ 1, m =′ exp  (ε v ),p′
′ ′ ε +′ d(m , q) =′ d(p , q).′

 (t) =γ~   {
exp  (tv),p

exp  ((t − t  )v ),p′ 0
′

t ∈ [0, t  ],0

t ∈ (t  , t  + ε ].0 0
′



By Corollary 3,  is a geodesic segment, since  We get  and  which is a
controdiction. 
Thus  and  Whence 

Hopf-Rinow Theoren. Let  Then the following are equivalent. 
(i)  
(ii) Each bounded closed subset of  is compact. 
(iii)  is a complete metric space. 
(iv)  (geodesically complete) 
Moreover, each of (i)-(iv) implies 
(v)  there exists some minimizing geodesic segement from  to 

Proof. (i) (ii). Since every bounded closed set is contained in some closed ball centered at  it is sufficient to
show that  is compact for each  Choose 

 By the previous theorem, we can find some  Then 
Hence  Taking the closure, we get  which is homeomorphic to
a closed ball in  Since a closed subset of a compact set is compact, we get  is compact. 
(ii) (iii). Obviously. 
(iii) (iv). Let  solve the ODE

We need to verify that  Assume that  Then   is a Cauchy
sequence since

Then  converges to some  Thus

Define

Then  is continuous. Choose a totally geodesic neighborhood  of  Then for some 
  Since  is a totally geodesic neighborhood,  There exists a unique

gedesic  joint  and  Then  extends  which implies  Similiarly we can prove  
(iv) (i)(v). Obviously.

Curvature
Definition: curvature tensor. Let  be a Riemannian manifold. Define  by

⟹

⟹

⟹

ε + d(m , q) = d(p , q), t  + d(p , q) = d(p, q)′ ′ ′
0

′

t  + ε + d(m , q) = d(p, q)0
′ ′

L(  ) = d(p, q) − d(m , q) ≤ d(p,m )γ~ ′ ′

L(  ) = d(p,m ).γ~ ′

 γ~ ∣  ∣ ≡γ~ 1. m =′ γ(t  +0 ε )′ t  +0 ε ∈′ T ,

r = supT ∈ T , r = d(p, q) = r + d(γ(r), q). γ(r) = q.

p ∈ M.
Dom(exp  ) =p T  M.p

M

M

∀q ∈ M, Dom(exp  ) =q T  M.q

∀q  , q  ∈1 2 M, q1 = q  ,2 q  1 q  .2

⟹ p,
 (p) =BR {x ∈ M : d(x, p) ≤ R} R > 0. q ∈ B  (p), d(p, q) =R r <

R. v ∈ T  M, ∣v∣ =p 1, exp  (rv) =p q. q ∈ exp  (  (0  )).p BR p

B  (p) ⊂R exp  (  (0  )).p BR p  (p) ⊂BR exp  (  (0  ))p BR p

R .n  (p)BR

⟹
⟹ γ : (a, b) → M

 {
γ = 0,′′

γ (0) = v ∈ T  M, ∣v∣ = 1.′
q

a = −∞, b = ∞. b < ∞. ∀{t  } ⊂i (a, b), t  →i b, {γ(t  )}i

d(γ(t  ), γ(t  )) ≤i j ∣t  −i t  ∣, ∀i, j.j

γ(t  )i m ∈ M.

γ(t) → m as t → b .−

γ(b) :=  γ(t) =
t→b−
lim m.

γ : (a, b] → M (U , r) γ(b). ε >
0, γ([b − ε, b]) ⊂ U . U U ⊂ B  (γ(b −r ε)).

α γ(b − ε) γ(b). α γ, b = ∞. a = −∞.
⟹

M R : (V(M)) →
3

V(M)



Then  is a 4-tensor. We call  the curvature tensor of   is -linear, since

We also write

and

Moreover,

Theorem.  
(i)  
(ii)  
(iii)  
(iv) 

Proof. (i) Obviously. 
(ii) Observe that

Thus

(iii)

R(X,Y ,Z) = D  D  Z −Y X D  D  Z +X Y D  Z.[X,Y ]

R R M. R C∞

  

R(fX,Y ,Z)

R(X,Y , fZ)

= D  D  Z − D  D  Z + D  ZY fX fX Y [fX,Y ]

= D  (fD  Z) − fD  D  Z + D  ZY X X Y f [X,Y ]−(Y f)X

= (Y f)D  Z + fD  D  Z − fD  D  Z + fD  Z − (Y f)D ZX Y X X Y [X,Y ] X

= fD  D  Z − fD  D  Z + fD  Z = fR(X,Y ,Z),Y X X Y [X,Y ]

= D  D  (fZ) − D  D  (fZ) + D  (fZ)Y X X Y [X,Y ]

= D  ((Xf)Z + fD  Z) − D  ((Y f)Z + fD  Z) + ([X,Y ]f)Z + fD  ZY X X Y [X,Y ]

= (Y Xf)Z + (Xf)D  Z + (Y f)D  Z + fD  D  ZY X Y X

− (XY f)Z − (Y f)D  Z − (Xf)D  Z − fD  D  Z + ([X,Y ]f)Z + fD  ZX Y X Y [X,Y ]

= fD  D  Z − fD  D  Z + fD  Z = fR(X,Y ,Z).Y X X Y [X,Y ]

R(X,Y ,Z,W ) = ⟨R(X,Y ,Z),W ⟩ ∈ C (M)∞

R(X,Y ) = D  D  −Y X D  D  +X Y D  :[X,Y ] V(M) → V(M).

R(∂  , ∂  ) =i j D  D  −∂  j ∂  i D  D  .∂  i ∂  j

R(X,Y ,Z,W ) = −R(Y ,X,Z,W ).
R(X,Y ,Z,W ) = −R(X,Y ,W ,Z).
R(X,Y ,Z) + R(Z,X,Y ) + R(Y ,Z,X) = 0.
R(X,Y ,Z,W ) = R(Z,W ,X,Y ).

  

R(X,Y ,Z,Z) =

=

⟨D  D  Z,Z⟩ − ⟨D  D  Z,Z⟩ + ⟨D  Z,Z⟩Y X X Y [X,Y ]

 Y X⟨Z,Z⟩ − ⟨D  Z,D  Z⟩
2
1

X Y

−  XY ⟨Z,Z⟩ + ⟨D  Z,D  Z⟩
2
1

Y X

+  [X,Y ]⟨Z,Z⟩ = 0.
2
1

0 =

=

=

R(X,Y ,Z + W ,Z + W )

R(X,Y ,Z,Z) + R(X,Y ,Z,W ) + R(X,Y ,W ,Z) + R(X,Y ,W ,W )

R(X,Y ,Z,W ) + R(X,Y ,W ,Z).



(iv)

Notation: For  write

Theorem.

where 

Proof. Observe that

Then

Since

we have

Moreover,

Hence

  

=

=

=

D(X,Y ,Z) + D(Z,X,Y ) + D(Y ,Z,X)

D  D  Z − D  D  Z + D  ZY X X Y [X,Y ]

+ D  D  Y − D  D  Y + D  YX Z Z X [Z,X]

+ D  D  X − D  D  X + D  XZ Y Y Z [Y ,Z]

D  [X,Z] + D  [Z,Y ] + D  [Y ,X] − D  Z − D  Y − D  XY X Z [Y ,X] [X,Z] [Z,Y ]

[Y , [X,Z]] + [X, [Z,Y ]] + [Z, [Y ,X]] = 0.

R(Z,W ,X,Y ) =

=

=

=

=

=

− R(W ,X,Z,Y ) − R(X,Z,W ,Y )

R(W ,X,Y ,Z) + R(X,Z,Y ,W )

− R(X,Y ,W ,Z) − R(Y ,W ,X,Z) − R(Z,Y ,X,W ) − R(Y ,X,Z,W )

2R(X,Y ,Z,W ) + R(Y ,W ,Z,X) + R(Z,Y ,W ,X)

2R(X,Y ,Z,W ) − R(W ,Z,Y ,X)

2R(X,Y ,Z,W ) − R(Z,W ,X,Y ).

F : (V(M)) →
4

V(M),

σF (X,Y ,Z,W ) = F (X,Y ,Z,W ) + F (Y ,Z,X,W ) + F (Z,X,Y ,W ).

D  R(Y ,Z,W ) +X D  R(X,Y ,W ) +Z D  R(Z,X,W ) =Y 0,

D  R(Y ,Z,W ) =X D  (R(Y ,Z,W )) −X R(D  Y ,Z,W ) −X R(Y ,D  Z,W ) −X R(Y ,Z,D  W ).X

D  R(Y ,Z,W ) =X

=

D  (R(Y ,Z)W ) − R(D  Y ,Z)W − R(Y ,D  Z)W − R(Y ,Z)D  WX X X X

[D  ,R(Y ,Z)]W − R(D  Y ,Z)W − R(Y ,D  Z)W .X X X

σD  R(Y ,Z,W ) =X σ[D  ,R(Y ,Z)]W − σR(Y ,D  Z)W = −σR(Y ,Z)D  W .X X X

R(Y ,Z) = D  D  −Z Y D  D  +Y Z D  =[Y ,Z] [D  ,D  ] −Z Y D  ,[Z,Y ]

σ[D  ,R(Y ,Z)]W =X σ[D  , [D  ,D  ]]W −X Z Y σ[D  ,D  ]W =X [Z,Y ] −σ[D  ,D  ]W .X [Z,Y ]

σR(D  Y ,Z)W + σR(Y ,D  Z)W =X X

=

=

=

σR(D  X,Y )W − σR(D  Z,Y )WZ X

σR([Z,X],Y )W

σ[D  ,D  ]W − σD  WY [Z,X] [Y ,[Z,X]]

σ[D  ,D  ]W .Y [Z,X]



Proposition.

where

Thus  By symmetric, we also have

Proof. We have

Then the indentity holds since

Proposition. Let  be a smooth vector field along a smooth surface  Then

Proof.

Sectional Curvature
Definition: sectional curvature. Define

σD  R(Y ,Z,W ) =X − σ[D  ,D  ]W − σ[D  ,D  ]W = σ[D  ,D  ]W − σ[D  ,D  ]W = 0.X [Z,Y ] Y [Z,X] X [Y ,Z] Y [Z,X]

R(∂  , ∂  , ∂  ) =i j k R  ∂  ,ijk
l

l

R  =ijk
l ∂  Γ  −j ik

l ∂  Γ  +i jk
l Γ  Γ  −ik

m
jm
l Γ  Γ  .jk

m
im
l

R(∂  , ∂  , ∂  , ∂  ) =i j k l R  =ijkl R  g  .ijk
m

ml

R  =ijkl −R  , R  =jikl ijkl −R  , R  +ijlk ijkl R  +jkil R  =kijl 0.

  

D  D  ∂  =∂  j ∂  i k

=

=

D  (Γ  ∂  )∂  j ik
m

m

∂  Γ  ∂  + Γ  D  ∂  j ik
m

m ik
m

∂  j m

(∂  Γ  + Γ  Γ  )∂  .j ik
l

ik
m

jm
l

l

R(∂  , ∂  , ∂  ) = D  D  ∂  − D  D  ∂  .i j k ∂  j ∂  i k ∂  i ∂  j k

X f = f(s, t).

∂  ∂  X −s t ∂  ∂  X =t s R(∂  f , ∂  f)X.t s

=

=

⟹

=

⟹

=

=

=

=

=

∂  Xt

∂  (X ∂  ) = ∂  X ∂  + X ∂  ∂  t
i
i t

i
i

i
t i

∂  X ∂  + X D  ∂  = ∂  X ∂  + X ∂  f D  ∂  t
i
i

i
∂  ft i t

i
i

i
t

j
∂  j i

∂  ∂  Xs t

∂  ∂  X ∂  + ∂  X ∂  f D  ∂  + ∂  X ∂  f D  ∂  s t
i
i t

i
s

j
∂  j i s

i
t

j
∂  j i

+ X ∂  ∂  f D  ∂  + X ∂  f ∂  f D  D  ∂  i
s t

j
∂  j i

i
t

j
s

k
∂  k ∂  j i

∂  ∂  X − ∂  ∂  Xs t t s

X ∂  f ∂  f D  D  ∂  − X ∂  f ∂  f D  D  ∂  i
t

j
s

k
∂  
k ∂  j i

i
s

j
t

k
∂  
k ∂  j i

X ∂  f ∂  f [D  ,D  ]∂  i
t

j
s

k
∂  k ∂  j i

X ∂  f ∂  f R(∂  , ∂  )∂  i
t

j
s

k
j k i

R(∂  f ∂  , ∂  f ∂  )(X ∂  )t
j

j s
k

k
i
i

R(∂  f , ∂  f)X.t s

sec :  (T  M) →
p∈M

⋃ p
2 R, sec(u, v) = R(u, v,u, v),u, v ∈ T  M, p ∈p M.



Then 

In this chapter, we often assume  Otherwise 

Notation. Let  Write

Definition: sectional curvature. Let

Define

Then  is well-defined.

Proof. Let  with  and

Then

The identity above, together with  implies that  is well-defined.

Theorem.

Proof. The identity holds since

Definition: manifold with constant sectional curvature. If  for some  then we call 
 a manifold with constant sectional curvature 

sec(u,u) = 0, sec(u, v) = sec(v,u), sec(su, tv) = s t sec(u, v).2 2

n = dimM > 1. R(⋅, ⋅, ⋅, ⋅) = 0.

u, v ∈ T  M,up ∥ v.

u ∧ v = span{u, v}, ∣u ∧ v∣ =  .∣u∣ ∣v∣ − ⟨u, v⟩2 2 2

Σ = {σ : σ is a 2-plane in T  M for some p ∈p M}.

sec : Σ → R, sec(u ∧ v) =  .
∣u ∧ v∣2
sec(u, v)

sec

e  ∧1 e  =2 u ∧ v e  ⊥1 e  , ∣e  ∣ =2 1 ∣e  ∣ =2 1

 {u = ae  + be  ,1 2

v = ce  + de  .1 2

sec(u, v) =

=

=

sec(ae  + be  , ce  + de  )1 2 1 2

(ad − bc) sec(e  , e  )2
1 2

∣u ∧ v∣ sec(e  , e  ).2
1 2

∣e  ∧1 e  ∣ =2 1, sec

R(x, y,u, v) =  ∂  ∂    ( sec(x +
6
1

s t
(0,0)

su, y + tv) − sec(x + sv, y + tu))

=

=

=

=

=

=

∂  ∂    sec(x + su, y + tv)s t
(0,0)

∂  ∂    R(x + su, y + tv,x + su, y + tv)s t
(0,0)

R(x, y,u, v) + R(u, v,x, y) + R(x, v,u, y) + R(u, y,x, v)

2R(x, y,u, v) + 2R(x, v,u, y),

∂  ∂    sec(x + sv, y + tu)s t
(0,0)

2R(x, y, v,u) + 2R(x,u, v, y)

− 2R(x, y,u, v) − 2R(u, v,x, y) − 2R(v,x,u, y)

− 4R(x, y,u, v) + 2R(x, v,u, y).

sec(σ) = κ, ∀σ ∈ Σ κ ∈ R,
M κ.



Theorem.  is a manifolds with constant sectional curvature  if and only if

Proof. The "only if" part is obvious. We will only prove the "if" part. Indeed, by the previous theorem, we have

Spaces with Constant Sectional Curvature
Proposition. Let

where  Then 
(i)  
(ii)  is a line  -axis or a semicircle centered at some point in -axis. 
(iii)  is a Riemannian isometry.

Proof. (i) For  choose  Then  and

(ii) By computation,

Let  If  then

If  then

M κ

R(u, v,x, y) = κ(⟨x,u⟩⟨y, v⟩ − ⟨x, v⟩⟨u, y⟩).

R(x, y,u, v) =

=

=

=

 ∂  ∂    ( sec(x + su, y + tv) − sec(x + sv, y + tu))
6
1

s t
(0,0)

 ∂  ∂    (∣x + su∣ ∣y + tv∣ − ⟨x + su, y + tv⟩
6
κ

s t
(0,0)

2 2 2

− ∣x + sv∣ ∣y + tu∣ + ⟨x + sv, y + tu⟩ )2 2 2

 (4⟨x,u⟩⟨y, v⟩ − 2⟨x, y⟩⟨u, v⟩ − 2⟨x, v⟩⟨u, y⟩
6
κ

− 4⟨x, v⟩⟨y,u⟩ + 2⟨x, y⟩⟨v,u⟩ + 2⟨x,u⟩⟨v, y⟩)

κ(⟨x,u⟩⟨y, v⟩ − ⟨x, v⟩⟨u, y⟩).

f(z) =  , z =
cz + d

az + b
x + iy ∈ C,

a, b, c, d ∈ R, ad − bc = 1.
f(H ) =2 H .2

f(Ri) ⊥ x x

f : H →2 H2

w ∈ H ,2 z =  .a−cw
dw−b f(z) = w

  

Imz =

=

=

=

 (z − ) =   −  
2i
1

z̄
2i
1 (

a − cw

dw − b

a − cw̄

d − bw̄ )

 
2i(a − cw)(a − c )w̄

(dw − b)(a − c ) − (d − b)(a − cw)w̄ w̄

 
2i∣a − cw∣2

adw − ab − cd∣w∣ + bc − ad + ab + cd∣w∣ − bcw2 w̄ w̄ 2

 =  > 0.
2i∣a − cw∣2
w − w̄

∣a − cw∣2
Imw

Rez =  .
∣a − cw∣2

(ad + bc)Rew − cd∣w∣ − ab2

Rez = 0. cd = 0,

Rew =  .
ad + bc

ab

cd = 0,

2 2



where  
(iii) From (i), we know that

Thus for  we have

Theorem. Let

be the hyperbolic space with  Then  has constant sectional curvature 

Proof. We have

Hence

Thus

x −  +(
2cd

ad + bc)
2

y =2  −(
2cd

ad + bc)
2

 >
cd

ab
0,

w = x + iy.

Imf(z) =  .
∣cz + d∣2

Imz

z ∈ H ,u, v ∈2 T  H =z
2 C,

⟹

=

=

=

df  (u) = f (z)u =  z
′

(cz + d)2

u

⟨df  (u), df  (v)⟩  z z H2

 Re   
(Imf(z))2

1 (
(cz + d)2

u

(c + d)z̄ 2

v̄ )

 
(Imf(z)) ∣cz + d∣2 4

Re(u )v̄

 = ⟨u, v⟩  .
(Imz)2

Re(u )v̄
H2

H =n {x = (x , ⋯ ,x ) ∈1 n R :n x >n 0}

g  (x) =ij (x ) δ  .n −2
ij Hn −1.

Γ  =ij
k

=

=

 (∂  g  + ∂  g  − ∂  g  )g
2
1

j im i jm m ij
mk

(x ) (δ  δ  − δ  δ  − δ  δ  )δ  n −1
mn ij jn im in jm mk

(x ) (δ  δ  − δ  δ  − δ  δ  ).n −1
kn ij jn ik in jk

  

R  =ijk
l

=

=

=

∂  Γ  − ∂  Γ  + Γ  Γ  − Γ  Γ  j ik
l

i jk
l

ik
m

jm
l

jk
m

im
l

(x ) (δ  (δ  δ  − δ  δ  − δ  δ  ) − δ  (δ  δ  − δ  δ − δ  δ  )n −2
in ln jk kn jl jn kl jn ln ik kn il in kl

+ (δ  δ  − δ  δ  − δ  δ  )(δ  δ  − δ  δ  − δ  δ )mn ik kn im in km ln jm mn jl jn ml

− (δ  δ  − δ  δ  − δ  δ  )(δ  δ  − δ  δ  − δ  δ ))mn jk kn jm jn km ln im mn il in ml

(x ) (δ  (δ  δ  − δ  δ  − δ  δ  ) − δ  (δ  δ  − δ  δ − δ  δ  )n −2
in ln jk kn jl jn kl jn ln ik kn il in kl

+ δ  (δ  δ  − δ  − δ  δ  ) − δ  (δ  δ  − δ  δ  − δ  δ  ) − δ  (δ  δ  − δ  δ  − δ  δ  )ik ln jn jl jn ln kn ln ij in jl jn il in ln jk kn jl jn kl

− δ  (δ  δ  − δ  − δ  δ  ) + δ  (δ  δ  − δ  δ  − δ  δ  ) + δ  (δ  δ  − δ  δ  − δ  δ  )jk ln in il in ln kn ln ij jn il in jl jn ln ik kn il in kl

(x ) (δ  δ  − δ  δ ).n −2
il jk ik jk

R  =ijkl R  g  = (x ) (δ  δ  − δ  δ  ).ijk
m

ml
n −4

il jk ik jk



Write  For  choose  such that

Then  and

Therem.  has constant sectional curvature 

Proof. Let

It is sufficient to consider the curvature at  By computation,

Let  Then

Thus

Choose  and we get

Since  is a linear space with dimension   has constant sectional curvature  at 

Theorem.  has constant sectional curvature.

Proof. In the proof, we will use same notation of  in both  and  And we only compuate the curvature at 
 Let

Then

e  =i ∣∂  ∣  ∂  =i Hn
−1

i x ∂  .n
i σ ∈ Σ, u, v ∈ T  Hx

n

σ = u ∧ v, ∣u∣  =Hn ∣v∣  =Hn 1, ⟨u, v⟩  =Hn 0, u = u e  , v =i
i v e  .i

i

∣u ∧ v∣ = 1,

  

sec(σ) =

=

=

R(u, v,u, v) = u v u v (x ) R  i j k l n 4
ijkl

u v v u − u u v vi i j j i i j j

⟨u, v⟩  − ∣u∣  ∣v∣  = −1.Hn
2

Hn
2

Hn
2

S2 1.

f(θ,φ) = (sin θ, cos θ sinφ, cos θ cosφ), θ ∈ [0, 2π),φ ∈ [0,π].

e  =3 f(0, 0).

 ⟹{∂  f = (cos θ, − sin θ sinφ, − sin θ cosφ),θ

∂  f = (0, cos θ cosφ, − cos θ sinφ)φ

 {∂  f(0, 0) = e  ,θ 1

∂  f(0, 0) = e  .φ 2

X = ∂  f .θ

∂  X =θ T  (− sin θ, − cos θ sinφ, − cos θ cosφ) =f 0,
∂  ∂  X =φ θ 0,

∂  X =φ T  (0, − sin θ cosφ, sin θ sinφ) =f (0, − sin θ cosφ, sin θ sinφ),
∂  ∂  X =θ φ T  (0, − cos θ cosφ, cos θ sinφ) =f (0, − cos θ cosφ, cos θ sinφ).

∂  ∂  X −φ θ ∂  ∂  X =θ φ R(∂  f , ∂  f)X.θ φ

θ = φ = 0,

e  =2 R(e  , e  )e  ⟹1 2 1 R(e  , e  , e  , e  ) =1 2 1 2 1.

T  Se  3
2 2, S2 1 e  .3

Sn

e  i Rn R .n+1

e  .n+1

f(x) = (x,  ), x ∈1 − ∣x∣2 R , ∣x∣ <n 1.

∂  f =i

∂  ∂  f =j i

=

∂  ∂  ∂  f(0) =k j i

(e  , −x  (1 − ∣x∣ ) ), ∂  f(0) = e  ,i i
2 −  

2
1

i i

T  (0, −δ  (1 − ∣x∣ ) − x  x  (1 − ∣x∣ ) )f ij
2 −  

2
1

i j
2 −  

2
3

((δ  +  )x, −∣x∣ (δ  (1 − ∣x∣ ) + x  x  (1 − ∣x∣ ) )),ij 1 − ∣x∣2
x  x  i j 2

ij
2 −  2

1
i j

2 −  2
3

δ  e  .ij k



Hence

For  with  we have

Ricci Curvature and Scalar Curvature
Trace of bilinear operator. Let  be an inner product space with dimension  and  a bilinear operator on 

 Then there exists a unique linear operator  such that

Define  
Let  be a basis of  Write

Then we have

Given a tenser  define  by

Then

where 

Let  be a -tensor with  Define

Then  is a -tensor and

 is a tensor of order  We have

Definition: Ricci curvature. Define  Then 

Let  with  Then

⟹

⟹

∂  ∂  ∂  f − ∂  ∂  ∂  f = R(∂  f , ∂  f)∂  fk j i j k i j k i

δ  e  − δ  e  = R(e  , e  )e  ij k ik j j k i

R(e  , e  , e  , e  ) = δ  δ  − δ  δ  .j k i l ij kl ik jl

σ = u ∧ v ∈ Σ ∣u∣ = ∣v∣ = 1,u ⊥ v,

  
sec(σ) =

=

R(u, v,u, v) = u  v  u  v  R(e  , e  , e  , e  )j k i l j k i l

u  v  − u  v  u  v  = ∣u∣ ∣v∣ − ⟨u, v⟩ = 1.i
2

k
2

i i j j
2 2 2

(V , ⟨⋅, ⋅⟩) n B

V . A : V → V

B(u, v) = ⟨Au, v⟩, u, v ∈ V .

trB := trA.
e  , ⋯ , e  1 n V .

g  =ij ⟨e  , e  ⟩, (g ) =i j
ij (g  ) , Ae  =ij

−1
i A  e  , B  =i

j
j ij B(e  , e  ).i j

B  =ij ⟨Ae  , e  ⟩ =i j A  g  
i
k

kj

⟹ A  =i
j B  g , trB =ik

kj trA = A  =i
i B  g .ij

ji

T : V(M) × V(M) → C (M),∞ trT : M → R

trT (p) =  trace of T : T  M ×p M → R.

trT = T  g ∈ij
ij C (M),∞

T =ij T (∂  , ∂  ).i j

T : V (M) →k C (M)∞ k k ≥ 3.

T  (x  , ⋯ ,  , ⋯ ,  , ⋯ ,x  ) =(α,β) 1 x̂α x̂β k trT (x  , ⋯ ,x  , ⋅,x  , ⋯ ,x  , ⋅,x  , ⋯ ,x  ).1 α−1 α+1 β−1 β+1 k

T  (α,β) (k − 2)

(T  )  =(α,β) i  ,⋯ ,  ,⋯ ,  ,⋯ ,i  1 îα îβ k
T  g .i  ,⋯ ,i  1 k

i  i  α β

R(⋅, ⋅, ⋅, ⋅) 4.

R  =(1,2) R  =(3,4) R  g =ijkl
ij 0, R  =(2,4) R  =(1,3) −R  =(1,4) −R  .(2,3)

Ric = R  .(2,4) (Ric)  =ij R  g .ikjl
kl

T  M =p span{e  }  i i=1
n ⟨e  , e  ⟩ =i j δ  .ij

Ric(e  , e  ) =i j trR(e  , ⋅, e  , ⋅) =i j R(e  , e  , e  , e  )δ  =i k j l kl R(e  , e  , e  , e  ).i k j k



When 

When 

Thus  and  are equivalent when 

Definition: scalar curvature. Define 

If  has constant sectional curvature  then

Jacobi Field

Introduction
Definition: Jacobi field. Let  be a geodesic,  If  satisfies the Jacobi equation:

we call  a Jacobi field along 

Proposition. Let  be a geodesic,  Then  is a Jacobi field if and only if  a geodesic
variation  (i.e. ) such that 

Proof. The "if" part. By computation,

The "only if" part. Choose  and  such that

Let

Then

Thus 

For  consider the ODE

n = 2,

Ric(e  , e  ) =1 1 R(e  , e  , e  , e  ) =1 2 1 2 sec(e  , e  ).1 2

n = 3,

Ric(e  , e  ) =i i sec(e  , e  ) +i j sec(e  , e  ), {i, j, k} =i k {1, 2, 3}.

Ric sec n ≤ 3.

scal = tr(Ric) = (Ric)  g =ij
ij R  g g .ikjl

ij kl

M κ,

scal = Ric(e  , e  )δ  =i j ij sec(e  , e  ) =i k n(n − 1)κ.

γ : [0, a] → M J ∈ V(γ). J

J +′′ R(γ ,J)γ =′ ′ 0,

J γ.

γ : [0, a] → M J ∈ V(γ). J ∃
f = f(s, t) : (−ε, ε) × [0, a] → M f  =0 γ, ∂  f =t

2 0, ∀s J = ∂  f   .s s=0

  
0 =

=

∂  ∂  f   = ∂  ∂  ∂  f   + R(∂  f , ∂  f)∂  f   s t
2

s=0 t s t s=0 t s t s=0

∂  ∂  f   + R(γ ,J)γ = J + R(γ ,J)γ .t
2

s s=0
′ ′ ′′ ′ ′

α : (−ε, ε) → M X ∈ V(α)

α(0) = γ(0), α (0) =′ J(0), X(0) = γ (0), X (0) =′ ′ J (0).′

f(s, t) = exp  (tX(s)), K(t) =α(s) ∂  f(0, t).s

K(0) = ∂    f(s, 0) =s s=0
∂    α(s) =s s=0

α (0) =′ J(0),
K (0) =′ ∂  ∂  f(0, 0) =t s ∂  ∂ f(0, 0) =s t X (0) =′ J (0).′

J = K.

γ(0) = p, v,w ∈ T  M,p

 {J + R(γ ,J)γ = 0,′′ ′ ′

J(0) = v,J (0) = w.′



Let  be the set of all Jacobi fields with initial value in  and write

Then  is a isomorphism and  We also write

Proposition. Let  Then 

Proof.

Proposition. 

Proof. Observe that   and

Theorem. Let  be a geodesic with   a Jacobi field along  with 
 Then

Proof. By computation,

Hence

Conjugate Points
Definition: conjugate points. Let  be a geodesic with  for some 
If   with  we say  is a conjugate point of 

Example. In   is a conjugate point of 

Proof. It is sufficient to consider the case when  Let

J T  M ×p T Mp

S : T  M ×p T  M →p J , S(v,w) = J .

S dim J = 2n.

J =⊥ {J ∈ J : J(t) ⊥ γ (t), ∀t ∈′ [0, a]}.

J ∈ J . J ∈ J ⟺⊥ J(0),J (0) ⊥′ γ (0).′

∂  ⟨J , γ ⟩ =t
2 ′ ⟨J , γ ⟩ =′′ ′ −R(γ ,J , γ , γ ) =′ ′ ′ 0

⟹ ⟨J , γ ⟩ =′ ⟨J (0), γ (0)⟩t +′ ′ ⟨J(0), γ (0)⟩.′

J = J ⊕⊥ span{γ , tγ }.′ ′

γ′ ∥ tγ ,′ γ , tγ ⊥′ ′ J ⊥

dim J =⊥ dim{J ∈ J : J(0),J (0) ⊥′ γ (0)} =′ 2n − 2.

γ : [0, a] → M γ(0) = p, γ (0) =′ v, ∣v∣ = 1, J γ

J(0) = 0,J (0) =′ w, ∣w∣ = 1,w ⊥ v.

∣J(t)∣ = t −  sec(v,w)t +
6
1 3 o(t ) as t →3 0.

  

∂    ∣J ∣ =t t=0
2

∂    ∣J ∣ =t
2
t=0

2

∂    ∣J ∣ =t
3
t=0

2

∂    ∣J ∣ =t
4
t=0

2

=

=

=

2⟨J (0),J(0)⟩ = 0,′

2⟨J (0),J(0)⟩ + 2∣J (0)∣ = 2,′′ ′ 2

2⟨J (0),J(0)⟩ + 6⟨J (0),J (0)⟩ = −6R(γ (0),J(0), γ (0),J (0)) = 0,′′′ ′′ ′ ′ ′ ′

2⟨J (0),J(0)⟩ + 8⟨J (0),J (0)⟩ + 6∣J (0)∣ = 8⟨J (0),J (0)⟩′′′′ ′′′ ′ ′′ 2 ′′′ ′

− 8⟨∂    R(γ ,J , γ ),w⟩ = −8⟨∂    (J R(γ , ∂  , γ )),w⟩t t=0
′ ′

t t=0
i ′

i
′

− 8⟨(J ) R(γ , ∂  , γ )   ,w⟩ = −8⟨R(γ ,J , γ )   ,w⟩i ′ ′
i

′
t=0

′ ′ ′
t=0

− 8R(v,w, v,w) = −8 sec(v,w).

∣J(t)∣ =2 t −  sec(v,w)t +
3
1 4 o(t ) =4 t −  sec(v,w)t + o(t ) as t →(

6
1 3 3 )

2

0.

γ : [0, a] → M p = γ(0), q = γ(t  )0 t  ∈0 (0, a].
∃ J ∈ J ∖ {0} J(0) = 0,J(t  ) =0 0, q p.

S ,2 −p p ∈ S .2

p = e  .3

f(s, t) = (sin s sin t, cos s sin t, cos t), γ = f  .0



Then  and  is a geodesic variation. Let  be a Jacobi field. Then

Let

Then  is a conjugate point of    Thus we define

since 

Definition: critical point. Let  If  is not surjective, then we call  a critical
point of  
When   is a critical point of    is not injective  

Since  is a geodesic,  and  where 

Proposition.  is a conjugate point of    is a critical point of  In this case, 

Proof. We claim that if 

Let  Then  Moreover,

Hence we prove the claim. Then

Thus

Then the proof is finished.

Jacobi Fields on a Manifold with Constant Sectional
Curvature
Definition: parallel vector field. Let  be a smooth curve,  If

we say  is a parallel vector field along  Set

e  =3 γ(0), −e  =3 γ(π) f J = ∂    fs s=0

J(t) = (sin t, 0, 0) ⟹ J(0) = 0,J(π) = 0.

J  =0 {J ∈ J : J(0) = 0} = S({0} × T  M),p

J  =0,0 {J ∈ J : J(0) = 0,J(t  ) =0 0}.

q p ⟺ dim J  >0,0 0.

mul q = dim J  <0,0 n,

tγ ∈′ J  ∖0 J  .0,0

f ∈ C (M  ; M  ),m  ∈∞
1 2 1 M  .1 df  m  1 q

f .
dim M  =1 dim M  ,2 q f ⟺ df  m  1 ⟺ dim ker(df  ) >m  1 0.

γ γ(t) = exp  (tγ (0))p
′ q = exp  (v  ),p 0 v  =0 t  γ (0).0

′

q p ⟺ v  0 exp  .p mul q =
dim ker d(exp  )  .p v  0

J ∈ J  ,0

J(t) = ∂    exp  t(γ (0) +s s=0 p
′ sJ (0)) =′ td(exp  )  (J (0)).p tγ (0)′

′

f(s, t) = exp  t(γ (0) +p
′ sJ (0)).′ f  =0 γ, f  =s

′′ 0, ∀s.

∂    exp  t(γ (0) + sJ (0))   =s s=0 p
′ ′

t=0

∂  ∂    exp  t(γ (0) + sJ (0))   =t s s=0 p
′ ′

t=0

=

0 = J(0),

∂    ∂    exp  t(γ (0) + sJ (0))s s=0 t s=0 p
′ ′

∂    (γ (0) + sJ (0)) = J (0).s s=0
′ ′ ′

J ∈ J  ⟺0,0 J (0) ∈′ ker d(exp  )  .p v0

J  =0,0 S({0} × ker d(exp  )  ).p v  0

α : [a, b] → M X ∈ V(α).

∂  X ≡t 0,

X α.

X = {X ∈ V(α) : ∂  X ≡t 0}.



Then for  

Definition: geodesic frame. Let  is a geodesic with  Let  with 
 And let  be the parallel vector field along  with  Then

Then  is called a geodesic frame.

Let  be a Riemannian manifold with constant sectional curvature   be a geodesic with 
 Then

Choose a geodesic frame  along  such that  Then  For  write 
 Then

Hence  implies

Then

When  with  we have

Then  

Hence  is a conjugate point of  if and only if  In this case, 

X,Y ∈ X , ⟨X,Y ⟩ ≡ constant.

γ : [0, a] → M γ(0) = p. T  M =p span{e  }  i i=1
n

⟨e  , e  ⟩ =i j δ  .ij E  i γ E  (0) =i e  .i

⟨E  (t),E  (t)⟩ =i j δ  , T  M =ij γ(t) span{E  (t)}  , ∀t ∈i i=1
n [0, a].

{E  }  i i=1
n

M κ, γ : [0, a] → M γ(0) =
p, ∣γ ∣ =′ 1.

⟹

R(X,Y ,Z,W ) = κ(⟨X,Z⟩⟨Y ,W ⟩ − ⟨X,W ⟩⟨Y ,Z⟩)

R(X,Y )Z = κ(⟨X,Z⟩Y − ⟨Y ,Z⟩X).

{E  }  i i=1
n γ E  (0) =n γ (0).′ E  =n γ .′ J ∈ J , J =

α  E  .i i

J =′′ α  E  ,i
′′

i

R(γ ,J)γ =′ ′ κ(⟨γ , γ ⟩J −′ ′ ⟨J , γ ⟩γ ) =′ ′ κ  α  E  .
i=1

∑
n−1

i i

J +′′ R(γ ,J)γ =′ ′ 0

α  +i
′′ κα  =i 0, i = 1, ⋯ ,n − 1, α  =n

′′ 0.

J(t) =    

⎩

⎨

⎧
 a   + b  cos(  t) E  + (a  t + b  )E  ,

i=1
∑
n−1

( i  κ
sin(  t)κ

i κ ) i n n n

 (a  t + b  )E  ,
i=1
∑
n

i i i

 a   + b  cosh(  t) E  + (a  t + b  )E  ,
i=1
∑
n−1

( i  κ
sinh(  t)κ

i κ ) i n n n

κ > 0,

κ = 0,

κ < 0.

M = S , γ :n [0, 2π] → M p = γ(0), ∣γ ∣ =′ 1, q = γ(t  ),0

J(t) =  (a  sin t +
i=1

∑
n−1

i b  cos t)E  +i i (a  t +n b  )γ ∈n
′ J .

J ∈ J  ∖0,0 {0} ⟺

b  =1 ⋯ = b  =n a  =n 0, t  =0 π.

q p q = γ(π) = −p. mul q = n − 1.


